Add Graph Based Lines

This commit is contained in:
Ekaropolus 2025-03-02 01:28:05 -06:00
parent f12945e689
commit eaf0a6273a
5 changed files with 114 additions and 18 deletions

Binary file not shown.

Binary file not shown.

View File

@ -19,13 +19,27 @@
}
});
</script>
<!-- Register a simple component to toggle the chat panel -->
<script>
AFRAME.registerComponent('toggle-chat', {
init: function () {
this.el.addEventListener('click', function () {
var panel = document.querySelector('#chatPanel');
var isVisible = panel.getAttribute('visible');
panel.setAttribute('visible', !isVisible);
});
}
});
</script>
</head>
<body>
<a-scene shadow="type: pcfsoft"
environment="preset: forest; dressing: trees; groundColor: #777; skyType: gradient; dressingAmount: 20;">
<!-- Camera & Controls (give it an id for look-at) -->
<a-entity id="mainCamera" camera look-controls wasd-controls position="0 2 0"></a-entity>
<a-entity id="mainCamera" camera look-controls wasd-controls position="0 2 5">
<a-cursor color="#FF0000"></a-cursor>
</a-entity>
<!-- Optional: Transparent ground plane (comment out if you want only environment ground) -->
<a-plane position="0 -0.1 0" rotation="-90 0 0"
@ -190,6 +204,33 @@
</a-entity>
{% endfor %}
<!-- VR AI Agent -->
<a-entity id="aiAgent" position="0 2 -3" toggle-chat class="clickable">
<!-- Agent appears as a rotating sphere -->
<a-sphere radius="0.5" color="#FF69B4"
animation="property: rotation; to: 0 360 0; loop: true; dur: 5000">
</a-sphere>
<!-- Prompt text above the agent -->
<a-text value="Ask me something!" position="0 1 0" align="center" width="2" color="#FFF"></a-text>
</a-entity>
<!-- Chat Panel (initially hidden) -->
<a-entity id="chatPanel" visible="false" position="1 2 -3">
<!-- Background panel for the chat -->
<a-plane width="3" height="2" color="#000" opacity="0.7" shadow="cast: false; receive: false"></a-plane>
<!-- Chat text; later this can be dynamic -->
<a-text value="Network Summary:
Towers: {{ city_data.network_summary.num_towers }}
Fiber: {{ city_data.network_summary.total_fiber_length|floatformat:2 }} m
Wi-Fi: {{ city_data.network_summary.num_wifi }}"
align="center" width="4" color="#FFF"
position="0 0 0.01">
</a-text>
</a-entity>
</a-scene>
</body>
</html>

View File

@ -7,4 +7,5 @@ urlpatterns = [
# Pattern to accept string words
path('city/digital/twin/<str:city_id>/', views.city_digital_twin, name='city_digital_twin_str'),
]

View File

@ -298,22 +298,8 @@ def generate_com_con_city_data(lat, long):
})
# Fiber paths connect neighboring towers
fiber_paths = []
for i in range(len(towers) - 1):
fiber_paths.append({
'id': i + 1,
'start_x': towers[i]['position_x'],
'start_z': towers[i]['position_z'],
'end_x': towers[i + 1]['position_x'],
'end_z': towers[i + 1]['position_z'],
'mid_x': (towers[i]['position_x'] + towers[i + 1]['position_x']) / 2,
'mid_y': 0.1,
'mid_z': (towers[i]['position_z'] + towers[i + 1]['position_z']) / 2,
'length': ((towers[i + 1]['position_x'] - towers[i]['position_x'])**2 + (towers[i + 1]['position_z'] - towers[i]['position_z'])**2)**0.5,
'angle': random.uniform(0, 360),
'status': 'Connected' if random.random() > 0.1 else 'Broken',
'color': '#4682b4'
})
# Compute optimized fiber paths using MST
fiber_paths = compute_mst_fiber_paths(towers)
# Wi-Fi Hotspots scattered nearby but within grid bounds
wifi_hotspots = []
@ -330,8 +316,76 @@ def generate_com_con_city_data(lat, long):
'color': '#32cd32'
})
network_summary = compute_network_summary(towers, fiber_paths, wifi_hotspots)
return {
'towers': towers,
'fiber_paths': fiber_paths,
'wifi_hotspots': wifi_hotspots
'wifi_hotspots': wifi_hotspots,
'network_summary': network_summary,
}
import networkx as nx
import math
def compute_distance(t1, t2):
"""
Compute Euclidean distance between two towers in the horizontal plane.
"""
dx = t1['position_x'] - t2['position_x']
dz = t1['position_z'] - t2['position_z']
return math.sqrt(dx**2 + dz**2)
def compute_mst_fiber_paths(towers):
"""
Given a list of tower dictionaries, compute a Minimum Spanning Tree (MST)
and return a list of fiber paths connecting the towers.
"""
G = nx.Graph()
# Add towers as nodes
for tower in towers:
G.add_node(tower['id'], **tower)
# Add edges: compute pairwise distances
n = len(towers)
for i in range(n):
for j in range(i+1, n):
d = compute_distance(towers[i], towers[j])
G.add_edge(towers[i]['id'], towers[j]['id'], weight=d)
# Compute MST
mst = nx.minimum_spanning_tree(G)
fiber_paths = []
for edge in mst.edges(data=True):
id1, id2, data = edge
# Find towers corresponding to these IDs
tower1 = next(t for t in towers if t['id'] == id1)
tower2 = next(t for t in towers if t['id'] == id2)
fiber_paths.append({
'id': len(fiber_paths) + 1,
'start_x': tower1['position_x'],
'start_z': tower1['position_z'],
'end_x': tower2['position_x'],
'end_z': tower2['position_z'],
'mid_x': (tower1['position_x'] + tower2['position_x']) / 2,
'mid_y': 0.1, # Slightly above the ground
'mid_z': (tower1['position_z'] + tower2['position_z']) / 2,
'length': data['weight'],
# Optionally, compute the angle in degrees if needed:
'angle': math.degrees(math.atan2(tower2['position_x'] - tower1['position_x'],
tower2['position_z'] - tower1['position_z'])),
'status': 'Connected',
'color': '#4682b4'
})
return fiber_paths
def compute_network_summary(towers, fiber_paths, wifi_hotspots):
total_fiber = sum(fiber['length'] for fiber in fiber_paths)
return {
'num_towers': len(towers),
'total_fiber_length': total_fiber,
'num_wifi': len(wifi_hotspots),
}